Extensions 1→N→G→Q→1 with N=D8⋊C22 and Q=C2

Direct product G=N×Q with N=D8⋊C22 and Q=C2
dρLabelID
C2×D8⋊C2232C2xD8:C2^2128,2312

Semidirect products G=N:Q with N=D8⋊C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D8⋊C221C2 = M4(2)⋊5D4φ: C2/C1C2 ⊆ Out D8⋊C22168+D8:C2^2:1C2128,740
D8⋊C222C2 = C422D4φ: C2/C1C2 ⊆ Out D8⋊C22164D8:C2^2:2C2128,742
D8⋊C223C2 = (C2×C8).2D4φ: C2/C1C2 ⊆ Out D8⋊C22324D8:C2^2:3C2128,749
D8⋊C224C2 = D8⋊D4φ: C2/C1C2 ⊆ Out D8⋊C22168+D8:C2^2:4C2128,922
D8⋊C225C2 = C42.313C23φ: C2/C1C2 ⊆ Out D8⋊C22164D8:C2^2:5C2128,1750
D8⋊C226C2 = M4(2)⋊C23φ: C2/C1C2 ⊆ Out D8⋊C22168+D8:C2^2:6C2128,1751
D8⋊C227C2 = M4(2).C23φ: C2/C1C2 ⊆ Out D8⋊C22328-D8:C2^2:7C2128,1752
D8⋊C228C2 = M4(2).10C23φ: C2/C1C2 ⊆ Out D8⋊C22324D8:C2^2:8C2128,1799
D8⋊C229C2 = M4(2).37D4φ: C2/C1C2 ⊆ Out D8⋊C22168+D8:C2^2:9C2128,1800
D8⋊C2210C2 = C8.C24φ: C2/C1C2 ⊆ Out D8⋊C22324D8:C2^2:10C2128,2316
D8⋊C2211C2 = D8⋊C23φ: C2/C1C2 ⊆ Out D8⋊C22168+D8:C2^2:11C2128,2317
D8⋊C2212C2 = C4.C25φ: C2/C1C2 ⊆ Out D8⋊C22328-D8:C2^2:12C2128,2318

Non-split extensions G=N.Q with N=D8⋊C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D8⋊C22.1C2 = M4(2).44D4φ: C2/C1C2 ⊆ Out D8⋊C22324D8:C2^2.1C2128,613
D8⋊C22.2C2 = C42.426D4φ: C2/C1C2 ⊆ Out D8⋊C22164D8:C2^2.2C2128,638
D8⋊C22.3C2 = M4(2).D4φ: C2/C1C2 ⊆ Out D8⋊C22328-D8:C2^2.3C2128,741
D8⋊C22.4C2 = C42.131D4φ: C2/C1C2 ⊆ Out D8⋊C22164D8:C2^2.4C2128,782
D8⋊C22.5C2 = C22⋊C4.7D4φ: C2/C1C2 ⊆ Out D8⋊C22324D8:C2^2.5C2128,785
D8⋊C22.6C2 = D8.D4φ: C2/C1C2 ⊆ Out D8⋊C22328-D8:C2^2.6C2128,923
D8⋊C22.7C2 = M4(2).51D4φ: C2/C1C2 ⊆ Out D8⋊C22164D8:C2^2.7C2128,1688
D8⋊C22.8C2 = M4(2).38D4φ: C2/C1C2 ⊆ Out D8⋊C22328-D8:C2^2.8C2128,1801
D8⋊C22.9C2 = C42.283C23φ: trivial image324D8:C2^2.9C2128,1687

׿
×
𝔽